Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 203: 107173, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580186

RESUMO

Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.

2.
Sci Adv ; 10(13): eadi9035, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552007

RESUMO

The pharyngeal endoderm, an innovation of deuterostome ancestors, contributes to pharyngeal development by influencing the patterning and differentiation of pharyngeal structures in vertebrates; however, the evolutionary origin of the pharyngeal organs in vertebrates is largely unknown. The endostyle, a distinct pharyngeal organ exclusively present in basal chordates, represents a good model for understanding pharyngeal organ origins. Using Stereo-seq and single-cell RNA sequencing, we constructed aspatially resolved single-cell atlas for the endostyle of the ascidian Styela clava. We determined the cell composition of the hemolymphoid region, which illuminates a mixed ancestral structure for the blood and lymphoid system. In addition, we discovered a cluster of hair cell-like cells in zone 3, which has transcriptomic similarity with the hair cells of the vertebrate acoustico-lateralis system. These findings reshape our understanding of the pharynx of the basal chordate and provide insights into the evolutionary origin of multiplexed pharyngeal organs.


Assuntos
Urocordados , Animais , Urocordados/genética , Faringe , Vertebrados , Evolução Biológica , Diferenciação Celular
3.
Mar Life Sci Technol ; 6(1): 1-14, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38433969

RESUMO

The electric catfish (Malapterurus electricus), belonging to the family Malapteruridae, order Siluriformes (Actinopterygii: Ostariophysi), is one of the six branches that has independently evolved electrical organs. We assembled a 796.75 Mb M. electricus genome and anchored 88.72% sequences into 28 chromosomes. Gene family analysis revealed 295 expanded gene families that were enriched on functions related to glutamate receptors. Convergent evolutionary analyses of electric organs among different lineage of electric fishes further revealed that the coding gene of rho guanine nucleotide exchange factor 4-like (arhgef4), which is associated with G-protein coupled receptor (GPCR) signaling pathway, underwent adaptive parallel evolution. Gene identification suggests visual degradation in catfishes, and an important role for taste in environmental adaptation. Our findings fill in the genomic data for a branch of electric fish and provide a relevant genetic basis for the adaptive evolution of Siluriformes. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-023-00197-8.

4.
Fish Shellfish Immunol ; 146: 109428, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325594

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is becoming the most common chronic liver disease in the world. Immunity is the major contributing factor in NAFLD; however, the interaction of immune cells and hepatocytes in disease progression has not been fully elucidated. As a popular species for studying NAFLD, zebrafish, whose liver is a complex immune system mediated by immune cells and non-immune cells in maintaining immune tolerance and homeostasis. Understanding the cellular composition and immune environment of zebrafish liver is of great significance for its application in NAFLD. Here, we established a liver atlas that consists of 10 cell types using single-cell RNA sequencing (scRNA-seq). By examining the heterogeneity of hepatocytes and analyzing the expression of NAFLD-associated genes in the specific cluster, we provide a potential target cell model to study NAFLD. Additionally, our analysis identified two subtypes of distinct resident macrophages with inflammatory and non-inflammatory functions and characterized the successive stepwise development of T cell subclusters in the liver. Importantly, we uncovered the possible regulation of macrophages and T cells on target cells of fatty liver by analyzing the cellular interaction between hepatocytes and immune cells. Our data provide valuable information for an in-depth study of immune cells targeting hepatocytes to regulate the immune balance in NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Peixe-Zebra/genética , Transcriptoma , Fígado/metabolismo , Hepatócitos/metabolismo , Comunicação Celular
5.
Nat Ecol Evol ; 8(4): 686-694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383849

RESUMO

Populations and species are threatened by human pressure, but their fate is variable. Some depleted populations, such as that of the northern elephant seal (Mirounga angustirostris), recover rapidly even when the surviving population was small. The northern elephant seal was hunted extensively and taken by collectors between the early 1800s and 1892, suffering an extreme population bottleneck as a consequence. Recovery was rapid and now there are over 200,000 individuals. We sequenced 260 modern and 8 historical northern elephant seal nuclear genomes to assess the impact of the population bottleneck on individual northern elephant seals and to better understand their recovery. Here we show that inbreeding, an increase in the frequency of alleles compromised by lost function, and allele frequency distortion, reduced the fitness of breeding males and females, as well as the performance of adult females on foraging migrations. We provide a detailed investigation of the impact of a severe bottleneck on fitness at the genomic level and report on the role of specific gene systems.


Assuntos
Genômica , Focas Verdadeiras , Masculino , Feminino , Humanos , Animais , Sequência de Bases , Focas Verdadeiras/genética
6.
Microbiol Spectr ; 12(3): e0217723, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319114

RESUMO

Lineage-wise physiological activities of plankton communities in the ocean are important but challenging to characterize. Here, we conducted whole-assemblage metatranscriptomic profiling at continental shelf and slope sites in the South China Sea to investigate carbon fixation potential in different lineages. RuBisCO expression, the proxy of Calvin carbon fixation (CCF) potential, was mainly contributed by Bacillariophyta, Chlorophyta, Cyanobacteria, and Haptophyta, which was differentially affected by environmental factors among lineages. CCF potential exhibited positive or negative correlations with phagotrophy gene expression, suggesting phagotrophy possibly enhances or complements CCF. Our data also reveal significant non-Calvin carbon fixation (NCF) potential, as indicated by the active expression of genes in all five currently recognized NCF pathways, mainly contributed by Flavobacteriales, Alteromonadales, and Oceanospirillales. Furthermore, in Flavobacteriales, Alteromonadales, Pelagibacterales, and Rhodobacterales, NCF potential was positively correlated with proton-pump rhodopsin (PPR) expression, suggesting that NCF might be energetically supported by PPR. The novel insights into the lineage-differential potential of carbon fixation, widespread mixotrophy, and PPR as an energy source for NCF lay a methodological and informational foundation for further research to understand carbon fixation and the trophic landscape in the ocean.IMPORTANCEMarine plankton plays an important role in global carbon cycling and climate regulation. Phytoplankton and cyanobacteria fix CO2 to produce organic compounds using solar energy and mainly by the Calvin cycle, whereas autotrophic bacteria and archaea may fix CO2 by non-Calvin cycle carbon fixation pathways. How active individual lineages are in carbon fixation and mixotrophy, and what energy source bacteria may employ in non-Calvin carbon fixation, in a natural plankton assemblage are poorly understood and underexplored. Using metatranscriptomics, we studied carbon fixation in marine plankton with lineage resolution in tropical marginal shelf and slope areas. Based on the sequencing results, we characterized the carbon fixation potential of different lineages and assessed Calvin- and non-Calvin- carbon fixation activities and energy sources. Data revealed a high number of unigenes (4.4 million), lineage-dependent differential potentials of Calvin carbon fixation and responses to environmental conditions, major contributors of non-Calvin carbon fixation, and their potential energy source.


Assuntos
Cianobactérias , Flavobacteriaceae , Gammaproteobacteria , Plâncton/genética , Dióxido de Carbono/metabolismo , Archaea/metabolismo , Flavobacteriaceae/metabolismo , Gammaproteobacteria/metabolismo , Perfilação da Expressão Gênica , Carbono/metabolismo
7.
Zool Res ; 45(1): 201-214, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38199974

RESUMO

Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters. The Jinjiang oyster ( Crassostrea ariakensis) is an economically and ecologically important species in China. In the present study, RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents. Analysis identified 9 483 differentially expressed genes (DEGs) and 7 215 genes with significantly differential chromatin accessibility (DCAGs) were obtained, with an overlap of 2 600 genes between them. Notably, a significant proportion of these genes were enriched in pathways related to glycogen metabolism, including "Glycogen metabolic process" and "Starch and sucrose metabolism". In addition, genome-wide association study (GWAS) identified 526 single nucleotide polymorphism (SNP) loci associated with glycogen content. These loci corresponded to 241 genes, 63 of which were categorized as both DEGs and DCAGs. This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C. ariakensis.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Estudo de Associação Genômica Ampla/veterinária , Sequenciamento de Cromatina por Imunoprecipitação/veterinária , RNA-Seq/veterinária , Análise de Sequência de RNA/veterinária , Cromatina , Glicogênio
8.
DNA Res ; 30(5)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37788574

RESUMO

Characiformes is a diverse and evolutionarily significant order of freshwater fish encompassing over 2,300 species. Despite its diversity, our understanding of Characiformes' evolutionary relationships and adaptive mechanisms is limited due to insufficient genome sequences. In this study, we sequenced and assembled the genomes of four Characiformes species, three of which were chromosome-level assemblies. Our analyses revealed dynamic changes in gene family evolution, repeat sequences and variations in chromosomal collinearity within these genomes. With the assembled genomes, we were not only able to elucidate the evolutionary relationship of the four main orders in Otophysi but also indicated Characiformes as the paraphyletic group. Comparative genomic analysis with other available fish genomes shed light on the evolution of genes related to tooth development in Characiformes. Notably, variations in the copy number of secretory calcium-binding phosphoproteins (SCPP) genes were observed among different orders of Otophysi, indicating their potential contribution to the diversity of tooth types. Our study offers invaluable genome sequences and novel insights into Characiformes' evolution, paving the way for further genomic and evolutionary research in fish.


Assuntos
Caraciformes , Animais , Filogenia , Caraciformes/genética , Genoma , Sequência de Bases , Genômica
9.
Nat Commun ; 14(1): 5630, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37699889

RESUMO

The six species of lungfish possess both lungs and gills and are the closest extant relatives of tetrapods. Here, we report a single-cell transcriptome atlas of the West African lungfish (Protopterus annectens). This species manifests the most extreme form of terrestrialization, a life history strategy to survive dry periods that can last for years, characterized by dormancy and reversible adaptive changes of the gills and lungs. Our atlas highlights the cell type diversity of the West African lungfish, including gene expression consistent with phenotype changes of terrestrialization. Comparison with terrestrial tetrapods and ray-finned fishes reveals broad homology between the swim bladder and lung cell types as well as shared and idiosyncratic changes of the external gills of the West African lungfish and the internal gills of Atlantic salmon. The single-cell atlas presented here provides a valuable resource for further exploration of the respiratory system evolution in vertebrates and the diversity of lungfish terrestrialization.


Assuntos
Ascomicetos , Salmo salar , Animais , Aclimatação , Sistema Respiratório , Brânquias , Sacos Aéreos
10.
DNA Res ; 30(5)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590994

RESUMO

Chaetodontidae, known as butterflyfishes, are typical fish in coral ecosystems, exhibiting remarkable interspecific differences including body colour patterns and feeding ecology. In this study, we report genomes of three butterflyfish species (Chelmon rostratus, Chaetodon trifasciatus and Chaetodon auriga) and a closely related species from the Pomacanthidae family, Centropyge bicolour, with an average genome size of 65,611 Mb. Chelmon rostratus, comprising 24 chromosomes assembled to the chromosome level, could be served as a reference genome for butterflyfish. By conducting a collinearity analysis between butterflyfishes and several fishes, we elucidated the specific and conserved genomic features of butterflyfish, with particular emphasis on novel genes arising from tandem duplications and their potential functions. In addition to the two melanocyte-specific tyr genes commonly found in fish, we found the gene tyrp3, a new tyrosinase-related proteins gene in the reef fish, including butterflyfish and clownfish, implicating their involvement in the pigmentation diversity of fish. Additionally, we observed a tandem duplication expansion of three copies of nell1 gene in C. rostratus genome, which likely contribute to its unique jaw development and distinctive morphology of its sharp mouth. These results provided valuable genomic resources for further investigations into the genetic diversity and evolutionary adaptations of reef fish.


Assuntos
Ecossistema , Genômica , Animais , Cor , Tamanho do Genoma , Cromossomos
11.
Cell Res ; 33(10): 745-761, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452091

RESUMO

Since the release of the complete human genome, the priority of human genomic study has now been shifting towards closing gaps in ethnic diversity. Here, we present a fully phased and well-annotated diploid human genome from a Han Chinese male individual (CN1), in which the assemblies of both haploids achieve the telomere-to-telomere (T2T) level. Comparison of this diploid genome with the CHM13 haploid T2T genome revealed significant variations in the centromere. Outside the centromere, we discovered 11,413 structural variations, including numerous novel ones. We also detected thousands of CN1 alleles that have accumulated high substitution rates and a few that have been under positive selection in the East Asian population. Further, we found that CN1 outperforms CHM13 as a reference genome in mapping and variant calling for the East Asian population owing to the distinct structural variants of the two references. Comparison of SNP calling for a large cohort of 8869 Chinese genomes using CN1 and CHM13 as reference respectively showed that the reference bias profoundly impacts rare SNP calling, with nearly 2 million rare SNPs miss-called with different reference genomes. Finally, applying the CN1 as a reference, we discovered 5.80 Mb and 4.21 Mb putative introgression sequences from Neanderthal and Denisovan, respectively, including many East Asian specific ones undetected using CHM13 as the reference. Our analyses reveal the advances of using CN1 as a reference for population genomic studies and paleo-genomic studies. This complete genome will serve as an alternative reference for future genomic studies on the East Asian population.


Assuntos
Diploide , População do Leste Asiático , Genoma Humano , Telômero , Humanos , Masculino , Povo Asiático/genética , População do Leste Asiático/etnologia , População do Leste Asiático/genética , Genoma Humano/genética , Genômica , Telômero/genética
12.
J Genet Genomics ; 50(9): 713-719, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37054878

RESUMO

Data visualization empowers researchers to communicate their results that support scientific reasoning in an intuitive way. Three-dimension (3D) spatially resolved transcriptomic atlases constructed from multi-view and high-dimensional data have rapidly emerged as a powerful tool to unravel spatial gene expression patterns and cell type distribution in biological samples, revolutionizing the understanding of gene regulatory interactions and cell niches. However, limited accessible tools for data visualization impede the potential impact and application of this technology. Here we introduce VT3D, a visualization toolbox that allows users to explore 3D transcriptomic data, enabling gene expression projection to any 2D plane of interest, 2D virtual slice creation and visualization, and interactive 3D data browsing with surface model plots. In addition, it can either work on personal devices in standalone mode or be hosted as a web-based server. We apply VT3D to multiple datasets produced by the most popular techniques, including both sequencing-based approaches (Stereo-seq, spatial transcriptomics, and Slide-seq) and imaging-based approaches (MERFISH and STARMap), and successfully build a 3D atlas database that allows interactive data browsing. We demonstrate that VT3D bridges the gap between researchers and spatially resolved transcriptomics, thus accelerating related studies such as embryogenesis and organogenesis processes. The source code of VT3D is available at https://github.com/BGI-Qingdao/VT3D, and the modeled atlas database is available at http://www.bgiocean.com/vt3d_example.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Transcriptoma/genética , Software , Bases de Dados Factuais
13.
Nat Ecol Evol ; 7(5): 675-686, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36941343

RESUMO

Understanding the factors that cause endangered populations to either grow or decline is crucial for preserving biodiversity. Conservation efforts often address extrinsic threats, such as environmental degradation and overexploitation, that can limit the recovery of endangered populations. Genetic factors such as inbreeding depression can also affect population dynamics but these effects are rarely measured in the wild and thus often neglected in conservation efforts. Here we show that inbreeding depression strongly influences the population dynamics of an endangered killer whale population, despite genomic signatures of purging of deleterious alleles via natural selection. We find that the 'Southern Residents', which are currently endangered despite nearly 50 years of conservation efforts, exhibit strong inbreeding depression for survival. Our population models suggest that this inbreeding depression limits population growth and predict further decline if the population remains genetically isolated and typical environmental conditions continue. The Southern Residents also had more inferred homozygous deleterious alleles than three other, growing, populations, further suggesting that inbreeding depression affects population fitness. These results demonstrate that inbreeding depression can substantially limit the recovery of endangered populations. Conservation actions focused only on extrinsic threats may therefore fail to account for key intrinsic genetic factors that also limit population growth.


Assuntos
Depressão por Endogamia , Orca , Animais , Endogamia , Orca/genética , Dinâmica Populacional , Seleção Genética
14.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36868220

RESUMO

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Assuntos
Euphausiacea , Genoma , Animais , Relógios Circadianos/genética , Ecossistema , Euphausiacea/genética , Euphausiacea/fisiologia , Genômica , Análise de Sequência de DNA , Elementos de DNA Transponíveis , Evolução Biológica , Adaptação Fisiológica
15.
BMC Biol ; 21(1): 51, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882766

RESUMO

BACKGROUND: Bivalves have independently evolved a variety of symbiotic relationships with chemosynthetic bacteria. These relationships range from endo- to extracellular interactions, making them ideal for studies on symbiosis-related evolution. It is still unclear whether there are universal patterns to symbiosis across bivalves. Here, we investigate the hologenome of an extracellular symbiotic thyasirid clam that represents the early stages of symbiosis evolution. RESULTS: We present a hologenome of Conchocele bisecta (Bivalvia: Thyasiridae) collected from deep-sea hydrothermal vents with extracellular symbionts, along with related ultrastructural evidence and expression data. Based on ultrastructural and sequencing evidence, only one dominant Thioglobaceae bacteria was densely aggregated in the large bacterial chambers of C. bisecta, and the bacterial genome shows nutritional complementarity and immune interactions with the host. Overall, gene family expansions may contribute to the symbiosis-related phenotypic variations in different bivalves. For instance, convergent expansions of gaseous substrate transport families in the endosymbiotic bivalves are absent in C. bisecta. Compared to endosymbiotic relatives, the thyasirid genome exhibits large-scale expansion in phagocytosis, which may facilitate symbiont digestion and account for extracellular symbiotic phenotypes. We also reveal that distinct immune system evolution, including expansion in lipopolysaccharide scavenging and contraction of IAP (inhibitor of apoptosis protein), may contribute to the different manners of bacterial virulence resistance in C. bisecta. CONCLUSIONS: Thus, bivalves employ different pathways to adapt to the long-term co-existence with their bacterial symbionts, further highlighting the contribution of stochastic evolution to the independent gain of a symbiotic lifestyle in the lineage.


Assuntos
Bivalves , Animais , Bivalves/genética , Transporte Biológico , Genoma Bacteriano , Proteínas Inibidoras de Apoptose , Lipopolissacarídeos
16.
Mol Ecol Resour ; 23(5): 1108-1123, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36826393

RESUMO

Cetaceans (dolphins, whales, and porpoises) have large and anatomically sophisticated brains. To expand our understanding of the cellular makeup of cetacean brains and the similarities and divergence between the brains of cetaceans and terrestrial mammals, we report a short-finned pilot whale (Globicephala macrorhynchus) single-nucleus transcriptome atlas. To achieve this goal, we assembled a chromosome-scale reference genome spanning 2.25 Gb on 22 chromosomes and profiled the gene expression of five major anatomical cortical regions of the short-finned pilot whale by single-nucleus RNA-sequencing (snRNA-seq). We identified six major cell lineages in the cerebral cortex (excitatory neurons, inhibitory neurons, oligodendrocytes, oligodendrocyte precursor cells, astrocytes, and endothelial cells), eight molecularly distinct subclusters of excitatory neurons, and four subclusters of inhibitory neurons. Finally, a comparison of snRNA-seq data from the short-finned pilot whale, human, and rhesus macaque revealed a broadly conserved cellular makeup of brain cell types. Our study provides genomic resources and molecular insights into cetacean brain evolution.


Assuntos
Golfinhos , Baleia Comum , Baleias Piloto , Animais , Humanos , Baleias Piloto/genética , Células Endoteliais , Macaca mulatta , Transcriptoma , Baleias/genética , Baleias/metabolismo , Golfinhos/genética , Córtex Cerebral
17.
Sci China Life Sci ; 66(5): 1151-1169, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36437386

RESUMO

Female-to-male sex reversals (pseudomales) are common in lower vertebrates and have been found in natural populations, which is a concern under rapid changes in environmental conditions. Pseudomales can exhibit altered spermatogenesis. However, the regulatory mechanisms underlying pseudomale spermatogenesis remain unclear. Here, we characterized spermatogenesis in Chinese tongue sole (Cynoglossus semilaevis), a species with genetic and environmental sex determination, based on a high-resolution single-cell RNA-seq atlas of cells derived from the testes of genotypic males and pseudomales. We identified five germ cell types and six somatic cell types and obtained a single-cell atlas of dynamic changes in gene expression during spermatogenesis in Chinese tongue sole, including alterations in pseudomales. We detected decreased levels of Ca2+ signaling pathway-related genes in spermatogonia, insufficient meiotic initiation in spermatocytes, and a malfunction of somatic niche cells in pseudomales. However, a cluster of CaSR genes and MAPK signaling factors were upregulated in undifferentiated spermatogonia of pseudomales. Additionally, we revealed that Z chromosome-specific genes, such as piwil2, dhx37, and ehmt1, were important for spermatogenesis. These results improve our understanding of reproduction after female-to-male sex-reversal and provide new insights into the adaptability of reproductive strategies in lower vertebrates.


Assuntos
Testículo , Transcriptoma , Animais , Masculino , Feminino , Testículo/metabolismo , Espermatogênese/genética , Células Germinativas , Peixes/genética
18.
BMC Biol ; 20(1): 289, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575497

RESUMO

BACKGROUND: Coleoid cephalopods have distinctive neural and morphological characteristics compared to other invertebrates. Early studies reported massive genomic rearrangements occurred before the split of octopus and squid lineages (Proc Natl Acad Sci U S A 116:3030-5, 2019), which might be related to the neural innovations of their brain, yet the details remain elusive. Here we combine genomic and single-nucleus transcriptome analyses to investigate the octopod chromosome evolution and cerebral characteristics. RESULTS: We present a chromosome-level genome assembly of a gold-ringed octopus, Amphioctopus fangsiao, and a single-nucleus transcriptome of its supra-esophageal brain. Chromosome-level synteny analyses estimate that the chromosomes of the ancestral octopods experienced multiple chromosome fission/fusion and loss/gain events by comparing with the nautilus genome as outgroup, and that a conserved genome organization was detected during the evolutionary process from the last common octopod ancestor to their descendants. Besides, protocadherin, GPCR, and C2H2 ZNF genes are thought to be highly related to the neural innovations in cephalopods (Nature 524:220-4, 2015), and the chromosome analyses pinpointed several collinear modes of these genes on the octopod chromosomes, such as the collinearity between PCDH and C2H2 ZNF, as well as between GPCR and C2H2 ZNF. Phylogenetic analyses show that the expansion of the octopod protocadherin genes is driven by a tandem-duplication mechanism on one single chromosome, including two separate expansions at 65 million years ago (Ma) and 8-14 Ma, respectively. Furthermore, we identify eight cell types (i.e., cholinergic and glutamatergic neurons) in the supra-esophageal brain of A. fangsiao, and the single-cell expression analyses reveal the co-expression of protocadherin and GPCR in specific neural cells, which may contribute to the neural development and signal transductions in the octopod brain. CONCLUSIONS: The octopod genome analyses reveal the dynamic evolutionary history of octopod chromosomes and neural-related gene families. The single-nucleus transcriptomes of the supra-esophageal brain indicate their cellular heterogeneities and functional interactions with other tissues (i.e., gill), which provides a foundation for further octopod cerebral studies.


Assuntos
Octopodiformes , Animais , Octopodiformes/genética , Transcriptoma , Filogenia , Protocaderinas , Evolução Molecular , Cariótipo
19.
J Adv Res ; 42: 237-248, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513415

RESUMO

INTRODUCTION: Cultivated peanut (Arachis hypogaea L.) is an important oil crop for human nutrition and is cultivated in >100 countries. However, the present knowledge of its genomic diversity, evolution, and loci related to the seed traits is limited. OBJECTIVES: Our study intended to (1) uncover the population structure and the demographic history of peanuts, (2) identify signatures of selection that occurred during peanut improvement breeding, and (3) detect and verify the functions of candidate genes associated with seed traits. METHODS: We explored the population relationship and the evolution of peanuts using a largescale single nucleotide polymorphism dataset generated from the genome-wide resequencing of 203 cultivated peanuts. Genetic diversity and genomic scan analyses were applied to identify selective loci for genomic-selection breeding. Genome-wide association studies, transgenic experiments, and RNA-seq were employed to identify the candidate genes associated with seed traits. RESULTS: Our study revealed that the 203 resequenced accessions were divided into four genetic groups, consistent with their botanical classification. Moreover, the var. peruviana and var. fastigiata subpopulations have diverged to a greater extent than the others, and var. peruviana may be the earliest variant in the evolution from tetraploid ancestors. A recent dramatic expansion in the effective population size of the cultivated peanuts ca. 300-500 years ago was also noted. Selective sweeps underlying quantitative trait loci and genes of seed size, plant architecture, and disease resistance coincide with the major goals of improved peanut breeding compared with the landrace and cultivar populations. Genome-wide association testing with functional analysis led to the identification of two genes involved in seed weight and seed length regulation. CONCLUSION: Our study provides valuable information for understanding the genomic diversity and the evolution of peanuts and serves as a genomic basis for improving peanut cultivars.


Assuntos
Arachis , Estudo de Associação Genômica Ampla , Arachis/genética , Mapeamento Cromossômico , Genoma de Planta , Genômica , Melhoramento Vegetal , Sementes/genética
20.
J Adv Res ; 42: 315-329, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513421

RESUMO

INTRODUCTION: Legume crops are an important source of protein and oil for human health and in fixing atmospheric N2 for soil enrichment. With an objective to accelerate much-needed genetic analyses and breeding applications, draft genome assemblies were generated in several legume crops; many of them are not high quality because they are mainly based on short reads. However, the superior quality of genome assembly is crucial for a detailed understanding of genomic architecture, genome evolution, and crop improvement. OBJECTIVES: Present study was undertaken with an objective of developing improved chromosome-length genome assemblies in six different legumes followed by their systematic investigation to unravel different aspects of genome organization and legume evolution. METHODS: We employed in situ Hi-C data to improve the existing draft genomes and performed different evolutionary and comparative analyses using improved genome assemblies. RESULTS: We have developed chromosome-length genome assemblies in chickpea, pigeonpea, soybean, subterranean clover, and two wild progenitor species of cultivated groundnut (A. duranensis and A. ipaensis). A comprehensive comparative analysis of these genome assemblies offered improved insights into various evolutionary events that shaped the present-day legume species. We highlighted the expansion of gene families contributing to unique traits such as nodulation in legumes, gravitropism in groundnut, and oil biosynthesis in oilseed legume crops such as groundnut and soybean. As examples, we have demonstrated the utility of improved genome assemblies for enhancing the resolution of "QTL-hotspot" identification for drought tolerance in chickpea and marker-trait associations for agronomic traits in pigeonpea through genome-wide association study. Genomic resources developed in this study are publicly available through an online repository, 'Legumepedia'. CONCLUSION: This study reports chromosome-length genome assemblies of six legume species and demonstrates the utility of these assemblies in crop improvement. The genomic resources developed here will have significant role in accelerating genetic improvement applications of legume crops.


Assuntos
Cicer , Fabaceae , Humanos , Fabaceae/genética , Mapeamento Cromossômico , Genoma de Planta , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Cicer/genética , Produtos Agrícolas/genética , Cromossomos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...